

Features

- Integrated 10 independent full duplex channels
- ☑ Transmission distance up to 100m (MM fiber)
- ☑ Support CFP MSA and CAUI electrical interface
- ☑ Compliant to IEEE 802.3ba 100Gbase-SR10
- Control functions through the CFP management interface
- ☑ CFP Power Class 1 (<8W)
- ☑ RoHS 6/6 compliant

Description

The transceiver is a hot pluggable fiber optic transceiver in the CFP form factor. Integrating 10 independent channels of 10G transmitting and receiving functions makes it ideally suited for 100G very short reach applications where cost effective high bandwidth is needed. The diagnostic and control functions are integrated into the design via a set of non-data hardware signal pins and Management Date Input/Output (MDIO) interface per the CFP Multi-Source Agreement (MSA) Management Interface Specification draft 1.4.

The transceiver supports an aggregate bandwidth of 100G over 100 meters of optical fiber. Each lane transmits and receives data streams at typical data rate of 10.3125Gbps. The CFP transceiver has a single MPO port which connects to an industry standard 2x12 multi-mode fiber cable. It provides an excellent solution for 100GbE data transmission at 850nm over up to 100m multimode mode ribbon cables. The product is designed and tested in accordance with industry safety standards. The transceiver

is Class 1 Laser product per U.S. FDA/CDRH and international IEC-60825 standards.

The transceiver connects to standard 148-pin CFP connectors for hot plug capability. This allows the system designer to make configuration changes or maintenance by simply plugging in different transceivers without removing the power supply from the host system. The transmitter and receiver DATA interfaces are internally AC-coupled. LV-CMOS Transmitter Disable control input and Loss of Signal (LOS) output interfaces are also provided.

The transceiver can be conveniently assembled into and released from the host system through the railing system specified in the CFP MSA.

The transceiver operates from a single +3.3V power supply over an operating case temperature range of $0\mathbb{C}$ to $+70\mathbb{C}$. The housing is made of metal for EMI immunity.

Parameters	Symbol	Min	Мах	Units
Storage Temperature Range	T _{ST}	- 40	+ 85	°C
Case Operating Temperature	T _{OP}	0	+ 70	°C
Operating Relative Humidity ¹	RH	5	95	%
Supply Voltage Range	Vcc	- 0.3	+ 4	V
Input LVTTL and LVCMOS signals	-	0	+ 3.6	V
¹ Non condensing				

Absolute Maximum Ratings

Honlus Technology (Hongkong) Limited Unit 4 7/F, Bright Way Tower, 33 Mong Kok Road, KL, Hongkong Email: sales@honlus.com Website: <u>www.honlus.com</u>

Transmitter Performance Characteristics (Over Operating Case Temperature Range, *V_{cc}* = 3.2 to 3.4V)

Parameter	Symbol	Min	Тур	Max	Units		
Signaling speed (per lane)	В	-	10.3125	-	Gb/s		
Lane wavelengths	λ	840	850	860	nm		
Spectral width	$\Delta\lambda_{rms}$	-	0.5	0.65	nm		
Average launch power ¹ (per lane)	P _{avg}	- 8	- 2.5	+ 1	dBm		
Optical modulation amplitude (per lane)	Рома	- 6	-	+ 3	dBm		
Extinction ratio	ER	3	-	-	dB		
Optical return loss tolerance	-	-	-	12	dB		
Average launch power of OFF transmitter	Poff	-	-	- 30	dBm		
Transmitter and dispersion penalty	TDP	-	-	3.0	dB		
Optical output eye Compliant with IEEE802.3ba							
¹ Average power figures are informative only	-						

'Average power figures are informative only

Note: The specified characteristics are met within the recommended range of operation. Unless otherwise noted typical data are quoted at nominal voltage and +25°C ambient temperature. The Rx parameters are measured at TP3 as defined in IEEE 802.3ba.

Receiver Performance Characteristics (Over Operating Case Temperature Range, Vcc = 3.2 to 3.4V)

Parameter		Symbol	Min	Тур	Мах	Units	
Signaling speed (p	er lane)	В	-	10.3125	-	Gb/s	
Wavelength of ope	ration	λ	840	850	860	nm	
Overload		-	+ 1	-	-	dBm	
Stressed sensitivity in OMA (per lane) ²		-	-	-	- 5.4	dBm	
Optical return loss		-	12	-	-	dB	
LOS hysteresis	OS hysteresis		0.5	-	-	dB	
LOS thresholds ³	Increasing light input	P _{los+}	-	-	- 10	dBm	
	Decreasing light input	P _{los-}	- 30	-	-		
¹ Average receive power	is informative only						

²Measured with conformance test signal as specified in IEEE 802.3ba

Note: The specified characteristics are met within the recommended range of operation. Unless otherwise noted typical data are quoted at nominal voltage and +25°C ambient temperature. The Rx parameters are measured at TP3 as defined in IEEE 802.3ba.

CFP Optical Interface Lanes and Assignment

Below figure and table shows the multimode fiber facets of the optical connector and lane assignment.

Fiber #	Lane Assignment	Corresponding Electrical pins	Fiber #	Lane Assignment	Corresponding Electrical pins
1	Unused		13	Unused	
2	RX0	79,80	14	TX0	113,114
3	RX1	82,83	15	TX1	116,117
4	RX2	85,86	16	TX2	119,120
5	RX3	88,89	17	ТХЗ	122,123
6	RX4	91,92	18	TX4	125,126
7	RX5	94,95	19	TX5	128,129
8	RX6	97,98	20	TX6	131,132
9	RX7	100,101	21	TX7	134,135
10	RX8	103,104	22	TX8	137,138
11	RX9	106,107	23	TX9	140,141
12	Unused		24	Unused	

Honlus Technology (Hongkong) Limited Unit 4 7/F, Bright Way Tower, 33 Mong Kok Road, KL, Hongkong Email: sales@honlus.com Website: www.honlus.com

Transmitter Electrical Characteristics (Over Operating Case Temperature range, V_{cc}=3.2 to 3.4V)

Parameter	Symbol	Min	Тур	Мах	Units
Differential input impedance	Z _d	-	100	-	Ω
Differential input voltage swing	V _{PP-DIFF}	20		1600	mV
Input high voltage	V _{IH}	2.0	-	V _{cc}	V
Input low voltage	V _{IL}	0	-	0.7	V

Receiver Electrical Characteristics (Over Operating Case Temperature range, V_{cc} = 3.2 to 3.4V)

Parameter	Symbol	Min	Тур	Max	Units
Differential output impedance	Zd	-	100	-	Ω
Differential output swing	V _{PP-DIFF}	-	600	800	mV
Output rise and fall time (20% to 80%)	t _{RH} , t _{FH}	-	-	35	ps
Inter-channel skew	-	-	-	150	ps
Signal detect assert timing	-	-	100	-	μS
Signal detect de-assert timing	-	-	100	-	μS

Electrical Power Supply Characteristics (Over Operating Case Temperature range, Vcc=3.2 to 3.4V)

Para	meter	Symbol	Min	Тур	Max	Units
Power supply voltage		V _{cc}	3.13	3.3	3.47	V
Power consumption in operating condition		P _W	-	6.1	8	W
Inrush current		-	-	-	50	mA/µs
Turn-off current		-	-50	-	-	mA/µs
Power supply noise	DC – 1MHz	V.	-	-	2	0/
	1 – 10MHz	Vrip	-	-	3	70

Laser Safety:

All transceivers are Class 1 Laser products per FDA/CDRH and IEC-60825 standards. They must be operated under specified operating conditions.

Connector Pin-out

Electrical Pin Definition

Pin	Logic	Symbol		Name/De
1-5	GND	3.3V_GND	3.3V Module Supply Voltage Return Ground	
6-15	Vcc	3.3V	3.3V Module Supply	
16-20	GND	3.3V_GND	3.3V Module Supply Voltage Return Ground	
21-22	-	DNC	Module Vendor I/O. Do not connect	
23	GND	GND	Ground	
24	CML	TX_MCLKn	Not used	
25	CML	TX_MCLKp	Not used	
26	GND	GND	Ground	
27-29	-	DNC	Module Vendor I/O. Do not connect.	
30	LVCMOS w/ PU	PRG_CNTL1	Programmable Control 1 set via MDIO, MSA default: TRXIC_RSTn – TX & RX IC reset. "0" = reset, "1" or NC = enabled or not used	
31	LVCMOS w/ PU	PRG_CNTL2	Programmable Control 2 set via MDIO, MSA default: Hardware power Interlock LSB, "00" = <8W, "01" = <16W, "10" < 24W, "11" or NC = >24W or not used	
32	LVCMOS w/ PU	PRG_CNTL3	Programmable Control 3 set via MDIO, MSA default: Hardware power Interlock MSB, "00" = <8W, "01" = <16W, "10" < 24W, "11" or NC = >24W or not used	
33	LVCMOS	PRG_ALRM1	Programmable Alarm 1 set via MDIO, MSA default: RXS, RX CDR Lock Indicator, "1" = loss of lock, "0" = locked	
34	LVCMOS	PRG_ALRM2	Programmable Alarm 2 set via MDIO, MSA default: HIPWR_ON, "1" = module power up completed, "0" = module not powered up	
35	LVCMOS	PRG_ALRM3	Programmable Alarm 3 set via MDIO, MSA default: MOD_READY, module initialization done, "1" = complete, "0" = not done	
36	LVCMOS w/ PU	TX_DIS	Transmitter Disable for all channels, "1" or NC = transmitter disabled, "0" = transmitter enabled	
37	LVCMOS w/ PU	MOD_LOPWR	Module low power mode. "1" or NC = module in low power (safe) mode, "0" = power-on enabled	
38	GND	MOD_ABS	Module Absent. "1" or NC = Module absent, "0" = module present. Pull-up resistor on Host	
39	LVCMOS w/ PD	MOD_RSTn	Module Reset. "0" = reset the module, "1" or NC = module enabled, Pull Down resistor in module	
40	LVCMOS	RX_LOS	Receiver loss of optical signal on any channel, "1" = loss of signal, "0" = normal condition	
41	LVCMOS	GLB_ALRMn	Global Alarm. "0" = alarm condition in any MDIO alarm register, "1" = no alarm	
42	1.2V CMOS	PRTADR4	MDIO port address bit 4	
43	1.2V CMOS	PRTADR3	MDIO port address bit 3	
44	1.2V CMOS	PRTADR2	MDIO port address bit 2	
45	1.2V CMOS	PRTADR1	MDIO port address bit 1	
46	1.2V CMOS	PRTADR0	MDIO port address bit 0	
47	1.2V CMOS	MDIO	Management Data I/O bi-directional data (electrical specs as per 802.3ae)	
48	1.2V CMOS	MDC	Management data clock (electrical specs as per 802.3ae)	

100Gb/s 850nm 10x 10.3G CFP SR10 TRx, 100m HOLS-CFP85M1-M5D-CV

49	GND	GND	Ground
50-51	-	DNC	Module Vendor I/Q Do not connect
52	GND	GND	Ground
53-54	-	DNC	Module Vendor I/O. Do not connect
55 50	CND		3 3V Module Supply Voltage Return Ground
50-59 60.60	Vice	3.31/	3.3V Module Supply
70-74		3.3V GND	3 3V Module Supply
75	GND		Ground
76	GND	RX MCLKn	Not used
70	CML	RX_MCLKp	Not used
78		GND	Ground
70	GND	RX0p	High speed receiver data
80	CML	RX0p	High speed receiver data
81		GND	Ground
82	CML	RX1n	High speed receiver data
83	CML	RX1n	High speed receiver data
84		GND	Ground
85	GND	BX2n	High speed receiver data
86		RX2p RX2n	High speed receiver data
00 97		GND	Ground
88	GND	BY3n	High speed receiver data
80	CML	RX3p RX3n	High speed receiver data
09 Q()		GND	Ground
01	CML	RX4n	High speed receiver data
02	CML	RX4n	High speed receiver data
02		GND	Ground
00 04	CML	RX5n	High speed receiver data
95	CML	RX5n	High speed receiver data
96	GND	GND	Ground
97	CML	RX6p	High speed receiver data
98	CML	RX6n	High speed receiver data
99	GND	GND	Ground
100	CMI	RX7p	High speed receiver data
101	CML	RX7n	High speed receiver data
102	GND	GND	Ground
102	CMI	RX8p	High speed receiver data
104	CMI	RX8n	High speed receiver data
105	GND	GND	Ground
106	CMI	RX9p	High speed receiver data
107	CMI	RX9n	High speed receiver data
108	GND	GND	Ground
109	-	RX DSCD	Not Used
110	-	RX DSCn	Not Used
111	GND	GND	Ground
112	GND	GND	Ground
	0.10	5,76	

100Gb/s 850nm 10x 10.3G CFP SR10 TRx, 100m HOLS-CFP85M1-M5D-CV

113	CML	TX0p	High speed transmitter data
114	CML	, TX0n	High speed transmitter data
115	GND	GND	Ground
116	CML	TX1p	High speed transmitter data
117	CML	, TX1n	High speed transmitter data
118	GND	GND	Ground
119	CML	TX2p	High speed transmitter data
120	CML	TX2n	High speed transmitter data
121	GND	GND	Ground
122	CML	ТХ3р	High speed transmitter data
123	CML	TX3n	High speed transmitter data
124	GND	GND	Ground
125	CML	TX4p	High speed transmitter data
126	CML	TX4n	High speed transmitter data
127	GND	GND	Ground
128	CML	TX5p	High speed transmitter data
129	CML	TX5n	High speed transmitter data
130	GND	GND	Ground
131	CML	TX6p	High speed transmitter data
132	CML	TX6n	High speed transmitter data
133	GND	GND	Ground
134	CML	TX7p	High speed transmitter data
135	CML	TX7n	High speed transmitter data
136	GND	GND	Ground
137	CML	TX8p	High speed transmitter data
138	CML	TX8n	High speed transmitter data
139	GND	GND	Ground
140	CML	ТХ9р	High speed transmitter data
141	CML	TX9n	High speed transmitter data
142	GND	GND	Ground
143	-	TX_DSCp	Not Used
144	-	TX_DSCn	Not Used
145	GND	GND	Ground
146	-	REFCLKp	Not Used
147	-	REFCLKn	Not Used
148	GND	GND	Ground

Application Notes

Electrical interface: All signal interfaces follow the CFP MSA specification. The high speed DATA interface is differential AC-coupled internally and can be directly connected to a 3.3V SERDES IC. Hardware control and status reporting pins are 3.3V LVCOMS compatible. The MDIO interface pins are 1.2V LVCOMS compatible and should be pulled up with a 4.7 - 10k Ω resistor on the host board.

TX Disable: When the TX Disable pin is at logic HIGH, the transmitter optical output is disabled. The laser is also disabled if this line is left floating, as it is pulled high inside the transceiver.

Receiver Loss of Signal (RX_LOS): The Loss of Signal circuit monitors the level of the incoming optical signal and generates logic HIGH when an insufficient photocurrent is produced. The RX_LOS is the logic OR of the LOS signals from all the input receiving channels in the CFP module.

MDIO Interface: Upon module initialization, the alarm, control and monitor functions are available through the MDIO interface. The interface consists of 8 wires including 2 wires of

MDC and MDIO, as well as 5 port address wires, and the Global Alarm wire.

MDC is the MDIO clock line driven by the host and MDIO is the bidirectional data line driven by both host and module depending upon the data directions. The MDIO port address pins PRTADR0:4 are used for the system to address all of the CFP ports contained within a host system PRTADR0 corresponds to the LSB in the port addressing scheme. The 5-wire port address lines are driven by host to set the module port address which should match the address specified in the MDIO frame. The Global Alarm pin (GLB_ALRMn) is an output pin to the host. It asserts low on any fault/alarm/warning/status conditions that has been chosen. It is driven by the logic OR of all unmasked fault/alarm/warning/status conditions latched in the latched registers.

The data transfer protocol and the details of the mandatory and vendor specific data structures are defined in the CFP MSA Management Interface Specification draft 1.4.

Power supply and grounding: The power supply line should be well-filtered. All power supply bypass capacitors should be as close to the transceiver module as possible.

Interfacing the Transceivers

Communication is via a set of non-MDIO hardware control and signal Pins and the MDIO interface. The MDIO management frame, set of CFP resisters and the set of rules for host control, module initialization, and signal exchange between Host and the transceiver is described in the document CFP MSA Management Interface Specification draft 1.4. Addresses from 0000h to 7FFFh are reserved for IEEE802.3. The CFP register space starts from 8000h to FFFFh.

CFP Register Allocation						
Starting Address in Hex	Ending Address in Hex	Access Type	Allocated Size	Data Bit Width	Table Name and Description	
0000	7FFF	N/A	32768	N/A	Reserved for IEEE 802.3 Use.	
8000	807F	RO	128	8	CFP NVR 1. Basic ID registers.	
8080	80FF	RO	128	8	CFP NVR 2. Extended ID registers.	
8100	817F	RO	128	8	CFP NVR 3. Network lane specific registers.	
8180	81FF	RO	128	8	CFP NVR 4.	
8200	83FF	RO	4x128	N/A	MSA Reserved.	
8400	847F	RO	128	8	Vendor NVR 1. Vendor data registers.	
8480	84FF	RO	128	8	Vendor NVR 2. Vendor data registers.	
8500	86FF	RO	6x128	N/A	Reserved by CFP MSA.	
8800	887F	R/W	128	8	User NVR 1. User data registers.	
8880	88FF	R/W	128	8	User NVR 2. User data registers.	
8900	8FFF	RO	14x128	N/A	Reserved by CFP MSA.	
9000	9FFF	RO	4096	N/A	Reserved for vendor private use.	
A000	A07F	R/W	128	16	CFP Module VR 1. CFP Module level control and DDM registers.	
A080	A0FF	RO	128	16	Reserved by CFP MSA.	
A100	A1FF	RO	2x128	N/A	Reserved by CFP MSA.	
A200	A27F	R/W	128	16	Network Lane VR 1. Network lane specific registers.	
A280	A2FF	R/W	128	16	Network Lane VR 2. Network lane specific registers.	
A300	A3FF	RO	2x128	N/A	Reserved by CFP MSA.	
A400	A47F	R/W	128	16	Host Lane VR 1. Host lane specific registers.	
A480	AFFF	RO	23x128	N/A	Reserved by CFP MSA.	
B000	FFFF	RO	5x4096	N/A	Reserved by CFP MSA.	

Module Outline

Honlus Technology (Hongkong) Limited Unit 4 7/F, Bright Way Tower, 33 Mong Kok Road, KL, Hongkong Email: sales@honlus.com Website: <u>www.honlus.com</u>

Optional Angled MPO connector

An angled optical receptacle option is offered to minimize the distance the optical fiber cable extends from the faceplate to aid in meeting network equipment building system standards. Below is the mechanical drawing.

Ordering Information

Model Name	Model Name Operating Temperature		Distance (m)	
HOLS-CFP85M1-M5D-CV	- 5°C to +70°C	850	100	