40Gb/s QSFP+ ER4 Optical Transceiver HOLS-QPPCW40-LD-CD ### **Features** - Compliant with 40G Ethernet IEEE802.3ba and 40GBASE-ER4 Standard - QSFP+ MSA compliant - Compliant with QDR/DDR Infiniband data rates - Up to 11.2Gb/s data rate per wavelength - 4 CWDM lanes MUX/DEMUX design - Up to 40km transmission on single mode fiber (SMF) - Operating case temperature: 0 to 70oC - Maximum power consumption 3.5W - LC duplex connector - RoHS compliant ### **Applications** - 40GBASE-ER4 Ethernet Links - Infiniband QDR and DDR interconnects - Client-side 40G Telecom connections ## 1. General Description This product is a transceiver module designed for up to 40km optical communication applications. The design is compliant to 40GBASE-ER4 of the IEEE P802.3ba standard. The module converts 4 inputs channels (ch) of 10Gb/s electrical data to 4 CWDM optical signals, and multiplexes them into a single channel for 40Gb/s optical transmission. Reversely, on the receiver side, the module optically de- multiplexes a 40Gb/s input into 4 CWDM channels signals, and converts them to 4 channel output electrical data. The central wavelengths of the 4 CWDM channels are 1271, 1291, 1311 and 1331nm as members of the CWDM wavelength grid defined in ITU-T G.694.2. It contains a duplex LC connector for the optical interface and a 38-pin connector for the electrical interface. To minimize the optical dispersion in the long-haul system, single-mode fiber (SMF) has to be applied in this module. The product is designed with form factor, optical/electrical connection and digital diagnostic interface according to the QSFP+ Multi-Source Agreement (MSA). It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference. ### 2. Functional Description This product converts the 4-channel 10Gb/s electrical input data into CWDM optical signals (light), by a driven 4-wavelength Distributed Feedback Laser (DFB) array. The light is combined by the MUX parts as a 40Gb/s data, propagating out of the transmitter module from the SMF. The receiver module accepts the 40Gb/s CWDM optical signals input, and de-multiplexes it into 4 individual 10Gb/s channels with different wavelength. Each wavelength light is collected by a discrete photo diode, and then outputted as electric data after amplified first by a TIA and a post amplifier. Figure 1 shows the functional block diagram of this product. A single +3.3V power supply is required to power up this product. Both power supply pins VccTx and VccRx are internally connected and should be applied concurrently. As per MSA specifications the module offers 7 low speed hardware control pins (including the 2-wire serial interface): ModSelL, SCL, SDA, ResetL, LPMode, ModPrsL and IntL. Module Select (ModSelL) is an input pin. When held low by the host, this product responds to 2-wire serial communication commands. The ModSelL allows the use of this product on a single 2-wire interface bus – individual ModSelL lines must be used. Serial Clock (SCL) and Serial Data (SDA) are required for the 2-wire serial bus communication interface and enable the host to access the QSFP+ memory map. The ResetL pin enables a complete reset, returning the settings to their default state, when a low level on the ResetL pin is held for longer than the minimum pulse length. During the execution of a reset the host shall disregard all status bits until it indicates a completion of the reset interrupt. The product indicates this by posting an IntL (Interrupt) signal with the Data_Not_Ready bit negated in the memory map. Note that on power up (including hot insertion) the module should post this completion of reset interrupt without requiring a reset. Low Power Mode (LPMode) pin is used to set the maximum power consumption for the product in order to protect hosts that are not capable of cooling higher power modules, should such modules be accidentally inserted. Module Present (ModPrsL) is a signal local to the host board which, in the absence of a product, is normally pulled up to the host Vcc. When the product is inserted into the connector, it completes the path to ground through a resistor on the host board and asserts the signal. ModPrsL then indicates its present by setting ModPrsL to a "Low" state. Interrupt (IntL) is an output pin. "Low" indicates a possible operational fault or a status critical to the host system. The host identifies the source of the interrupt using the 2-wire serial interface. The IntL pin is an open collector output and must be pulled to the Host Vcc voltage on the Host board. ### 3. Transceiver Block Diagram Honlus Technology (Hongkong) Limited Unit 4 7/F, Bright Way Tower, 33 Mong Kok Road, KL, Hongkong Website: www.honlus.com Figure 1. Transceiver Block Diagram ## 4. Pin Assignment and Description Figure 2. MSA compliant Connector ### 5. Pin Definition | PIN | Logic | Symbol | Name/Description | Notes | |-----|-------|--------|------------------|-------| | 1 | | GND | Ground | 1 | Honlus Technology (Hongkong) Limited Unit 4 7/F, Bright Way Tower, 33 Mong Kok Road, KL, Hongkong _____ | | | | | 1 | |----|------------|---------|--------------------------------------|---| | 2 | CML-I | Tx2n | Transmitter Inverted Data Input | | | 3 | CML-I | Tx2p | Transmitter Non-Inverted Data output | | | 4 | | GND | Ground | 1 | | 5 | CML-I | Tx4n | Transmitter Inverted Data Input | | | 6 | CML-I | Tx4p | Transmitter Non-Inverted Data output | | | 7 | | GND | Ground | 1 | | 8 | LVTLL-I | ModSelL | Module Select | | | 9 | LVTLL-I | ResetL | Module Reset | | | 10 | | VccRx | +3.3V Power Supply Receiver | 2 | | 11 | LVCMOS-I/O | SCL | 2-Wire Serial Interface Clock | | | 12 | LVCMOS-I/O | SDA | 2-Wire Serial Interface Data | | | 13 | | GND | Ground | | | 14 | CML-O | Rx3p | Receiver Non-Inverted Data Output | | | 15 | CML-O | Rx3n | Receiver Inverted Data Output | | | 16 | | GND | Ground | 1 | | 17 | CML-O | Rx1p | Receiver Non-Inverted Data Output | | | 18 | CML-O | Rx1n | Receiver Inverted Data Output | | | 19 | | GND | Ground | 1 | | 20 | | GND | Ground | 1 | | 21 | CML-O | Rx2n | Receiver Inverted Data Output | | | 22 | CML-O | Rx2p | Receiver Non-Inverted Data Output | | | 23 | | GND | Ground | 1 | | 24 | CML-O | Rx4n | Receiver Inverted Data Output | 1 | | 25 | CML-O | Rx4p | Receiver Non-Inverted Data Output | | | 26 | | GND | Ground | 1 | | 27 | LVTTL-O | ModPrsL | Module Present | | | 28 | LVTTL-O | IntL | Interrupt | | | 29 | | VccTx | +3.3 V Power Supply transmitter | 2 | | 30 | | Vcc1 | +3.3 V Power Supply | 2 | | 31 | LVTTL-I | LPMode | Low Power Mode | | | 32 | | GND | Ground | 1 | | 33 | CML-I | Тх3р | Transmitter Non-Inverted Data Input | | | 34 | CML-I | Tx3n | Transmitter Inverted Data Output | | |----|-------|------|-------------------------------------|---| | 35 | | GND | Ground | 1 | | 36 | CML-I | Тх1р | Transmitter Non-Inverted Data Input | | | 37 | CML-I | Tx1n | Transmitter Inverted Data Output | | | 38 | | GND | Ground | 1 | #### Notes: - 1. GND is the symbol for signal and supply (power) common for QSFP+ modules. All are common within the QSFP+ module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground plane. - 2. VccRx, Vcc1 and VccTx are the receiving and transmission power suppliers and shall be applied concurrently. Recommended host board power supply filtering is shown in Figure 3 below. Vcc Rx, Vcc1 and Vcc Tx may be internally connected within the QSFP+ transceiver module in any combination. The connector pins are each rated for a maximum current of 500mA. ## 6. Recommended Power Supply Filter Figure 3. Recommended Power Supply Filter ## 7. Absolute Maximum Ratings It has to be noted that the operation in excess of any individual absolute maximum ratings might cause permanent damage to this module. Honlus Technology (Hongkong) Limited Unit 4 7/F, Bright Way Tower, 33 Mong Kok Road, KL, Hongkong _____ | Parameter | Symbol | Min | Max | Units | Notes | |--------------------------------------|--------|------|-----|-------|-------| | Storage Temperature | TS | -40 | 85 | degC | | | Operating Case Temperature | ТОР | 0 | 70 | degC | | | Power Supply Voltage | VCC | -0.5 | 3.6 | V | | | Relative Humidity (non-condensation) | RH | 0 | 85 | % | | | Damage Threshold, each Lane | THd | 3.3 | | dBm | | ## **8. Recommended Operating Conditions and Power Supply Requirements** | Parameter | Symbol | Min | Typical | Max | Units | |----------------------------|--------|-------|---------|-------|-------| | Operating Case Temperature | ТОР | 0 | | 70 | degC | | Power Supply Voltage | VCC | 3.135 | 3.3 | 3.465 | V | | Data Rate, each Lane | | | 10.3125 | 11.2 | Gb/s | | Control Input Voltage High | | 2 | | Vcc | V | | Control Input Voltage Low | | 0 | | 0.8 | V | | Link Distance with G.652 | D | 0.002 | | 40 | km | ### 9. Electrical Characteristics The following electrical characteristics are defined over the Recommended Operating Environment unless otherwise specified. | Parameter | Symbo | Min | Typical | Max | Units | Notes | |----------------------------|-------|-------|---------------|---------|-------|-------------| | Power Consumption | | | | 3.5 | W | | | Supply Current | Ic | | | 1.1 | Α | | | Transceiver Power-on | | | | 2000 | ms | | | Initialization Time | | | | | | 1 | | | | Trans | smitter (each | n Lane) | | | | Single-ended Input Voltage | | | | | | Referred to | | Tolerance (Note 2) | | -0.3 | | 4.0 | V | TP1 signal | | | | | | | | common | | AC Common Mode Input | | 15 | | | mV | RMS | | Voltage Tolerance | | | | | | | | Differential Input Voltage | | 50 | | | mVpp | LOSA | | Swing Threshold | | | | | | Threshold | Honlus Technology (Hongkong) Limited Unit 4 7/F, Bright Way Tower, 33 Mong Kok Road, KL, Hongkong |
 |
 |
 | | |------|------|------|--| Vin,pp | 190 | | | | mVpp | | |---------|---------------|--|---|---------------------------------------|---|---| | | | | 70 | 0 | | | | Zi | 90 | 100 | 110 | | Ohm | | | | | | | | dB | 10MHz- | | | See I | EEE 802.3ba | 86A.4.11 | | | 11 1611- | | Jt | 0.17 | | | | UI | | | Jt | 0.29 | | | | UI | | | 9 | 0.07 | | | | UI | | | | | 0.11, 0 |).31 | | UI | Hit Ratio = | | | | 95 3 | 50 | | mV | 5x10 ⁻⁵ | | | | 33, 3 | 30 | | • | 2XI0 2 | | | Rec | eiver (each | Lane) | | | | | | | | 1 | | Refe | rred to signal | | | -0.3 | | 0 | V | | common | | | | | 7. | mV | RMS | | | | | | | | | | | Vout,pp | | | 85 | mVpp | | | | | 300 | | 0 | | | | | Zout | 90 | 100 | 11 | Ohm | | | | | | | 5 | % | | | | | | | | - | 10MHz- | | | | See II | ee IEEE 802.3ba 86A.4.2.1 dB 11.1GHz | | | | | | | See II | EEE 802.3ba | 86A.4.2.2 | dB | 10MHz- | | | | Zi Jt 2 Jt 9 | Zi 90 See II Jt 0.17 2 Jt 0.29 9 0.07 Rec -0.3 Vout,pp 300 Zout 90 | Zi 90 100 See IEEE 802.3ba Jt 0.17 2 Jt 0.29 9 0.07 Receiver (each -0.3 Vout,pp 300 Zout 90 100 See IEEE 802.3ba | To To To To To To To To | Too | Town | Unit 4 7/F, Bright Way Tower, 33 Mong Kok Road, KL, Hongkong | Output Transition Time | | 28 | | | ps | 20% to 80% | |--------------------------------------|-----|----|--------------|------|----------|-------------------------------| | J2 Jitter Output | Jo2 | | | 0.42 | UI | | | J9 Jitter Output | Jo9 | | | 0.65 | UI | | | Eye Mask Coordinates {X1, X2,Y1, Y2} | | | 0.29,
0.5 | | UI
mV | Hit Ratio =5x10 ⁻⁵ | ### Notes: - 1. Power-on Initialization Time is the time from when the power supply voltages reach and remain above the minimum recommended operating supply voltages to the time when the module is fully functional. - 2. The single ended input voltage tolerance is the allowable range of the instantaneous input signals. ## 10. Optical Characteristics | Parameter | Symbol | Min | Typical | Max | Units | Notes | |--|----------|----------|---------|--------|-------|-------| | | L0 | 1264.5 | 1271 | 1277.5 | nm | | | | L1 | 1284.5 | 1291 | 1297.5 | nm | | | Wavelength Assignment | L2 | 1304.5 | 1311 | 1317.5 | nm | | | J J | L3 | 1324.5 | 1331 | 1337.5 | nm | | | | | Transmit | ter | | | | | Side Mode Suppression Ratio | SMSR | 30 | | | dB | | | Total Average Launch Power | РТ | | | 10.5 | dBm | | | Average Launch Power, each Lane | PAVG | -2.7 | | 4.5 | dBm | | | Optical Modulation Amplitude | | | | | dBm | | | (OMA), each Lane | POMA | 0.3 | | 5 | иын | 1 | | Difference in Launch Power between any Two Lanes | Ptx,diff | | | 4.7 | dB | | Launch Power in OMA minus Transmitter and Dispersion dBm -0.5 Penalty (TDP), each Lane TDP, each Lane TDP 2.6 dB **Extinction Ratio** dB ER 5.5 12dB **Relative Intensity Noise** dB/Hz RIN -128 reflection dB **Optical Return Loss Tolerance** TOL 20 **Transmitter Reflectance** RT dB -12 Transmitter Eye Mask Definition {0.25,0.4,0.45,0.25,0.28,0.4} Average Launch Power OFF Poff dBm -30 Transmitter, each Lane Receiver Damage Threshold, each Lane THd 3.3 dBm 2 Total Average Receive Power 4.5 dBm Average Receive Power, each dBm -21.2 -4.5 Lane Receiver Reflectance dB RR-26 Receive Power (OMA), each dBm -4 Receiver Sensitivity (OMA), each SEN -19 dBm **Stressed Receiver Sensitivity** -16.8 dBm 3 (OMA), each Lane Difference in Receive Power Prx,diff dB between any Two Lanes 7.5 LOS Assert LOSA TBD dBm **LOS Deassert** LOSD -23 dBm | LOS Hysteresis | LOSH | 0.5 | | | dB | | |---|--------------|--------------------|-------------|---------------|-----|--| | Receiver Electrical 3 dB upper
Cutoff Frequency, each Lane | Fc | | | 12.3 | GHz | | | Conditi | ons of Stres | s Receiver | Sensitivity | Test (Note 4) | | | | Vertical Eye Closure Penalty, each | 2.2 dB | | | | | | | Stressed Eye J2 Jitter, each | | Per OTL3.4, G.8251 | | | | | | Stressed Eye J9 Jitter, each | | Per OTL3.4, G.8251 | | | | | ### Notes: - 1. Even if the TDP < 0.8 dB, the OMA min must exceed the minimum value specified here. - 2. The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power level on one lane. The receiver does not have to operate correctly at this input power. - 3. Measured with conformance test signal at receiver input for BER = $1x10^{-12}$. - 4. Vertical eye closure penalty and stressed eye jitter are test conditions for measuring stressed receiver sensitivity. They are not characteristics of the receiver. ### 11. Digital Diagnostic Functions The following digital diagnostic characteristics are defined over the normal operating conditions unless otherwise specified. | Parameter | Symbol | Min | Max | Units | Notes | |--|--------------|------|-----|-------|----------------------------------| | Temperature
monitor absolute
error | DMI_Temp | -۵ | +3 | degC | Over operating temperature range | | Supply voltage
monitor absolute | DMI _VCC | -0.1 | 0.1 | V | Over full operating range | | Channel RX power monitor absolute error | DMI_RX_Ch | -2 | 2 | dB | 1 | | Channel Bias current monitor | DMI_Ibias_Ch | -10% | 10% | mA | | | Channel TX power monitor absolute error | DMI_TX_Ch | -2 | 2 | dB | 1 | Notes: 1. Due to measuremet accuracy of differnts in glemode fibers, the recold be an additional +/-1 dB fluctuation, or a +/-3 dB to total acuracy. ### 12. Mechanical Dimensions Figure 4. Mechanical Outline _____ ### 13. **ESD** This transceiver is specified as ESD threshold 1kV for SFI pins and 2kV for all other electrical input pins, tested per MIL-STD-883, Method 3015.4 /JESD22-A114-A (HBM). However, normal ESD precautions are still required during the handling of this module. This transceiver is shipped in ESD protective packaging. It should be removed from the packaging and handled only in an ESD protected environment. ### 14. Laser Safety This is a Class 1 Laser Product according to IEC 60825-1:2007. This product complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated (June 24, 2007). ### 15. Order Information | Part Number | Product Description | |--------------------|---| | HOLS-QPPCW40-LD-CD | QSFP+ER4 40km optical transceiver with full real-time digital | | | diagnostic monitoring | | | | Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing by Honlus before they become applicable to any particular order or contract. In accordance with the Honlus policy of continuous improvement specifications may change without notice. The publication of information in this data sheet does not imply freedom from patent or other protective rights of Honlus or others. Further details are available from any Honlus sales representative. Unable Taskerslam (Unable of Control